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Abstract. The phase diagram of a model describing doped CuGeO3 is derived. The model emphasizes
the role of local moments released by the impurities and randomly distributed inside the gaped singlet
background. The phase diagram is investigated by two methods: (i) in a mean field treatment of the
interchain coupling and (ii) in a real space decimation procedure in a two-dimensional model of randomly
distributed moments. Both methods lead to similar results, in a qualitative agreement with experiments.
In particular, a transition to an inhomogeneous Néel phase is obtained for arbitrary small doping. From the
decimation procedure, we interpret this phase at very low doping as a Griffith antiferromagnet. Namely, it
does not have a true long range order down to zero temperature. Nonetheless, large magnetically ordered
clusters appear already at relatively high temperatures. This demonstrates the role of disorder in the
theoretical description of doping in CuGeO3. A detailed comparison with other approaches is also given.

PACS. 75.10.Jm Quantized spin models – 75.50.Ee Antiferromagnetics

1 Introduction

Spin-Peierls systems have been the subject of a renewed
interest because of the discovery of several inorganic quasi-
one-dimensional (Q1D) spin-Peierls compounds. A very
well studied example is CuGeO3. This Q1D compound
made of weakly coupled CuO2 chains has a spin-Peierls
transition at TSP ' 14 K [1], as revealed by diffraction
measurements, showing a dimerization below TSP, and by
susceptibility data, which indicate the opening of a spin
gap at TSP.

CuGeO3 can be doped in a controlled fashion, giving
the unique opportunity to study the role of impurities in a
spin-Peierls system. Doping is done in two different ways.
One possibility is to directly affect the spin degrees of free-
dom within each CuO2 chain by substituting some of the
Cu atoms (whose spin is S = 1/2) with magnetic (Ni [2],
which has S = 1, or Co [3], S = 3/2) or non-magnetic
(Zn [4–6], Mg [7]) impurities. Another way is by substi-
tuting Ge with Si [8], which is expected to modify the
strength of the exchange couplings among the magnetic
ions. For all these compounds, even a small amount of
doping strongly enhances the magnetic fluctuations, lead-
ing in most cases to a lower temperature Néel phase coex-
isting with the Peierls’s distorted phase. For instance, in
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0.3% Si-doped compounds, free spins are released which
contribute with a Curie-like behavior below TSP ' 12.5 K
(which is slightly reduced with respect to the undoped
sample), and finally get frozen below the Néel temper-
ature TN ' 0.95 K [9]. The same behavior has been re-
ported in a 2% Zn-doped compound, where magnetization
measurements can be interpreted as if approximately one
spin-1/2 per Zn atom is released [10]. In all cases but
Co-doped samples [11], the low doping x < 1% phase dia-
gram seems to have universal features [12]: TSP decreases
almost linearly with x, while no critical concentration for
the appearance of the Néel phase has till now been re-
vealed down to the lowest accessible impurity concentra-
tions (e.g. 0.12% Zn for which TN ' 0.025 K [13]).

At larger doping, the situation is still not fully estab-
lished. However, most of the data indicate that over some
critical xc, the spin-Peierls long-range order disappears,
although short-range correlations seem to persist. For Mg-
doped samples, it is claimed that at xc ' 2.3% a first order
phase transition takes place which is signaled by a jump
of TN [7].

Manabe et al. [13] have reported an antiferromag-
netic (AF) ordering with Zn concentrations as low as
0.11%. Their analysis of the variation of the Néel tem-
perature versus doping concentration has shown the ab-
sence of a critical doping concentration for AF ordering
at zero temperature (xc = 0). The goal of the present ar-
ticle is to understand this onset of long range AF order at
such low doping. This experimental observation questions
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the validity of existing theories in a much more drastic
way than the coexistence of AF order and dimerization.

Several distinct theories describe this coexistence of di-
merization and antiferromagnetism. Fukuyama et al. [14]
first proposed a model showing that the two orders can
coexist, and another model was proposed by Mostovoy
et al. [15]. Two of the present authors have proposed an-
other model for the coexistence of AF ordering and dimeri-
zation [16,17]. All these theories successfully describe the
coexistence of dimerization and AF order upon doping,
and they also show that the effect of doping amounts to
generate states inside the Spin-Peierls gap, in agreement
with susceptibility experiments (for example [13]). A sim-
ilar behavior is reported in spin-ladder systems, which, in
spite of having a large spin gap, undergo a Néel transi-
tion upon very small doping. For instance SrCu2O3, with
a spin gap of ∼ 400 K, has a finite TN ' 3 K already
at 1% Zn doping [18]. In these ladder compounds the low
energy spin excitations induced by doping have also been
revealed by a finite specific heat coefficient [18].

In their article, Manabe et al. pointed out that one
energy scale emerging from our model (denoted by T∗, see
Sects. 2.2 and 3 for its definition) was many orders of mag-
nitude lower than the Néel temperature (for instance at
x = 0.1%, T∗ ' 4×10−42 K whereas TN ' 20 mK has been
measured [13]). On the basis of the analysis of AF fluctu-
ations in the 1D model, we already suggested [16,17] that
this apparent inconsistence can be avoided if one makes
a proper treatment of disorder averaging. In the present
article, we push further this analysis by estimating the
Néel temperature in the presence of interchain coupling,
which turns the quasi-long-range AF fluctuations of the
1D model into a longer range order. We prove by two dif-
ferent methods (a mean field treatment of the interchain
coupling, and a decimation procedure of the 2D disordered
problem) that the resulting Néel temperature has the right
order of magnitude. Moreover, under both treatments, we
show that there is no critical concentration for the estab-
lishment of AF order. As it was shown by Mostovoy et al.,
this is not the case in their model, and we believe that
this is not the case either in the approach by Fukuyama
et al., further extended by Yoshioka and Suzumura [19].

The paper is organized as follows. We introduce the
model in Section 2, and discuss the experiments by
Manabe et al. [13]. The problem of interchain coupling is
first solved in Section 3 at the mean field level. Section 4
is devoted to the decimation approach that goes beyond
the mean field treatment of interchain interactions, and is
more relevant for the extremely low doping situation. The
picture of Griffith-like antiferromagnetism emerges from
this treatment: large AF correlated clusters are formed
when the temperature is decreased below the spin-Peierls
temperature, without infinite range ordering. A summary
of our results is presented in Section 5 together with a
comparison with the approaches by Mostovoy et al. [15],
Fukuyama et al. [14], and Yoshioka and Suzumura [19].
We argue that these approaches would fail to properly de-
scribe the low doping behavior, whereas our description
leads to AF ordering at infinitesimal doping. Since the
analysis of the work by Fukuyama et al. is more techni-

cally involved, we have kept the qualitative features for
the concluding section while the technical aspects are left
for the appendices.

2 The model

2.1 Generation of spin-1/2 moments

We start by briefly describing our model. Let us consider
the Hamiltonian of a dimerized Heisenberg model. Given
the large anisotropy in the couplings (for instance [20])

|Ja| ' Jc/100� Jb ' Jc/10� Jc ' 10.6 meV, (1)

where c is the chain axis, and a and b the two perpendicu-
lar directions, the Néel temperature is mainly determined
by Jc and Jb. We therefore consider the Hamiltonian of a
dimerized Heisenberg model in two dimensions,

J
∑
n,i

(
1 + δ(1)i+n

)
Sn,i · Sn,i+1 + J⊥

∑
n,i

Sn,i · Sn+1,i,

(2)

where J = Jc, J⊥ = Jb, i labels the sites along the chain
and n is the chain index. δ is the dimerization parameter
which is staggered along the b axis. In reality, frustra-
tion has to be added to get a reasonable agreement with
the spin susceptibility data above TSP [21]. This can be
accomplished by introducing for instance a (quite large)
next nearest neighbor exchange J ′ ∼ 0.23− 0.36J , which
can result both from next nearest neighbor Cu-Cu su-
perexchange and from the lattice quantum fluctuations.
However, this additional complication is neglected in our
present analysis.

When δ > 0, each spin at an even site is coupled by
a strong bond J(1 + δ) to the spin at its left, and by a
weak bond J(1 − δ) to the spin at its right, both on the
same chain. A finite gap between the singlet ground state
and the lowest triplet excitation arises as soon as δ 6= 0
and J⊥ is less than a critical value which depends on δ.
This should be the case of the pure CuGeO3. We start by
assuming that the most important effect of doping is that
each impurity releases a free spin out of the dimerized sin-
glet background. This behavior was anticipated in [22] on
the basis of exact diagonalization of small-size systems,
and in reference [16] by more qualitative arguments (see
Fig. 1). Further numerical works have confirmed this pic-
ture [23,24], and have shown its robustness when more re-
alistic assumptions are made, such as quantum phonons or
coupling to a 3D lattice dimerization [25], or next-nearest-
neighbor frustration [26]. The generation of spin-1/2 ob-
jects is most clearly seen for Zn or Mg doping and in the
limit J⊥ = 0. As a first approximation, the non magnetic
ion cuts the chain into two segments, e.g. one starting with
a weak bond, the other ending with a strong bond. In the
former segment, a free spin-1/2 moment will appear local-
ized at the boundary. Even if we add a weak link across the
non-magnetic ion, which couples the two end-spins of each
segment, this free spin-1/2 moment still exists. An even
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(a)

(b)

Fig. 1. Mapping of a segment with a non magnetic site to a
squeezed segment, without this site. The double line represents
a strong bond in the dimerized chain, i.e. J(1 + δ), the single
solid line a weak bond J(1 − δ), while the dotted line is the
weak link across the non magnetic site. Going from (b) to (c) we
have assumed the weak link equal to the weak bond. Therefore
the squeezed segment in (c) contains a domain wall, i.e. two
consecutive weak links.

more transparent explanation is obtained by considering
a ring of even number of sites. Since δ 6= 0, the ground
state is a singlet with a gap to the lowest S = 1 exci-
tations. If a spin is removed, and a weak link across the
empty site is added, the effective spin chain will now con-
tain an odd number of spins 1/2. Hence the ground state
will have S = 1/2, in spite of a finite gap to higher spin
states. Moreover, since translational symmetry is broken,
this S = 1/2 moment will be mostly localized around the
weak link. Similarly, even if one spin 1/2 is substituted
by a spin 1, modeling Ni doping, a free spin 1/2 moment
is formed around the impurity. We also believe that the
same situation holds with a finite J⊥.

The case of Si-doping is less clear. Ge is supposed to in-
fluence the superexchange between the Cu’s [27], increas-
ing the antiferromagnetic superexchange with respect to
the ferromagnetic indirect exchange, finally leading to a
net J > 0. The smaller bond length of Si-O has likely the
effect of reducing the antiferromagnetic superexchange by
diminishing the angle Cu-O-Cu, thus inducing defects in
the dimerized structure. In principle, a large reduction of
that angle might even change the sign of the Cu-Cu ex-
change constant, leading to the formation of free spin-1
moments. Although we believe this is likely to occur, here
we will limit our analysis to the simpler case of non mag-
netic ions substituting Cu.

We therefore take for granted the appearance of spin-
1/2 moments upon doping, in the line of several numeri-
cal works (see e.g. Refs. [22–26]) and pursue the next step
which is to build up the phase diagram of doped CuGeO3

from these excitations. This cannot be done without in-
cluding the effect of interactions between those spin-1/2
moments, which are central to our description.

As we argued, in such cases free spin-1/2 moments
form around each impurity, showing up as low energy
states inside the spin-Peierls gap, which, at very low dop-
ing, is almost unchanged. Therefore, we model the doped
compounds as a two components system, where spins 1/2
are diluted inside a singlet background, characterized by a
fixed gap between the singlet ground state and the first ex-
cited triplets. The virtual polarization of the singlet back-
ground provides an antiferromagnetic coupling between
these spins. Since the dimerized state is gaped, this cou-

pling decays exponentially with the distance between two
spins over a length of the order of the spin-Peierls corre-
lation length. For instance, let us consider two spins at
a distance r = (nxc, nyb), nx and ny being positive inte-
gers, and c and b the lattice constants in the chain and
perpendicular to the chain directions. Then, the exchange
between these two impurity-released spins can be taken of
the form

J(r) ' −(−1)nx+ny∆ exp

−
√(

nx
ξx

)2

+
(
ny
ξy

)2
, (3)

where ∆ is the spin gap, ξx = ξSP ' 9−13 [28] the correla-
tion length in lattice constant units along the c-axis, while
ξy ∼ ξSPJ⊥/J ' 0.1ξSP, the correlation length along the
b-axis. The oscillating factor in front takes into account
the fact that the singlet background polarizes mostly in a
staggered way, leading to a ferromagnetic exchange if the
two spins are on the same sublattice and to an antifer-
romagnetic one in the opposite case. Since the impurities
are located at random, replacing a fraction x of the mag-
netic sites, equation (3) defines a two-dimensional random
Heisenberg model, which should properly describe the ex-
citations at energies below the spin-Peierls gap.

The above two-component model looses its validity
at larger doping, where the impurities start to affect the
singlet background in a non negligible way. Nevertheless,
we believe that at low doping it does capture the essen-
tial physics of the real system, giving a good description
of the Néel transition. Below some temperature, these
weakly coupled spins will tend to order antiferromagneti-
cally. Moreover, they will also induce a staggered polariza-
tion on the singlet background, which does have a finite
staggered susceptibility, in spite of an exponentially de-
caying uniform susceptibility. According to this scenario,
the Néel phase would consist of spins antiferromagneti-
cally ordered diluted in a partially polarized singlet back-
ground. The main problem is to get an estimate of the
Néel transition temperature, which allows a direct com-
parison of the present model with the experimental phase
diagram of Cu1−xZnxGeO3 [13], where it has been shown
that zero temperature AF ordering occurs at an infinites-
imal Zn concentration.

2.2 The typical energy scale T∗ and the susceptibility
experiments by Manabe et al. [13]

We first proceed by considering the extremely low doping
susceptibility experiments by Manabe et al. [13], which, to
our knowledge are the only available with Zn concentra-
tions as low as 1.12×10−3. As pointed out in reference [13],
the Néel temperatures (see Tab. 1) are indeed much larger
than the typical energy scale T∗, given by the Néel tem-
perature of a regular array of equally spaced spin-1/2 mo-
ments with an exchange given by equation (3), which we
may estimate by considering, instead of a random distribu-
tion, a regular distribution of the spins over the 2D lattice
with a concentration x. The coupling along the c and b-
axes are then Jx = ∆ exp(−l/ξx) and Jy = ∆ exp(−l/ξy),
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Table 1. Parameters of the best fits of the susceptibility data by Manabe et al. to the forms (4) and (5) shown in Figure 2.
The Néel temperature is also given, and is of the same order of magnitude as Jimp and θ. The values of 〈〈J〉〉 (Eq. (8)) and T∗
(Eq. (9)) are also given.

x Jimp Cimp CSP θ C TN T∗ 〈〈J〉〉
(%) (K) (10−5 eum/g) (10−5 eum/g) (K) (10−5 eum/g) (K) (K) (K)

0.112 (2) 0.0033 0.35 297 0.0035 0.35 0.027 10−42 0.45

0.118 (2) 0.008 0.25 215 0.01 0.25 0.04 10−39 0.47

0.213 (4) 0.04 0.7 242 0.035 0.69 0.14 10−21 0.84

0.308 (6) 0.18 1.0 242 0.29 1.1 0.24 10−14 1.2

0.491 (10) 0.58 1.6 229 1.34 2.14 0.7 10−8 1.9

Fig. 2. Fit of the susceptibility experiments by Manabe
et al. [13] to the Curie form (5) (solid lines) and to the form (4)
(dashed lines). For clarity, we have multiplied the susceptibility
by the concentration, so that all the concentration data are at
the same scale at low temperature. Since the data provided to
us by Manabe et al. were very dense in some temperature re-
gions, we have “compressed” the data by averaging them over
given bins. The parameters of the fits are shown in Table 1.

respectively, with l = 1/
√
x the average distance between

the spins. Hence, at low doping, the effective Heisenberg
model describing the spins has a huge space anisotropy
Jx/Jy ∼ exp(−l/ξy)� 1, implying that the scale control-
ling the Néel temperature is T∗ ∼ Jy ∼ 2×10−14 K if x =
0.1%, which is far too small compared with the experimen-
tal values of the AF transition temperatures. The typical
energy scale T∗ can also be evaluated in the single chain
version of our model, as recalled in Section 3. Experimen-
tally, Manabe et al. [13] measure 0.027 K < TN < 0.7 K in
CuGeO3, for concentration impurities ranging from 0.11%
and 0.49% (see Tab. 1). A more accurate estimate of the
characteristic exchange interaction can be made by fitting
their data in the range TN < T < TSP.

We first decompose the susceptibility in the whole
range between TN and TSP into two contributions:

χ(T ) =
Cimp

T
exp

(
−Jimp

T

)
+
CSP

T
exp

(
−∆
T

)
, (4)

the first term corresponding to the low temperature con-
tribution of Zn impurities, and the second term describing
the higher temperature behavior of the susceptibility close
to the spin-Peierls temperature. The energy scale involved
in this contribution is the spin-Peierls gap ∆ ' 44.7 K.
The fits for various impurity concentrations are shown in
Figure 2, and are in a quite satisfactory agreement with
experiments.

The three parameters Cimp, Jimp, CSP are shown in
Table 1. The energy scale Jimp involved in the fit of the
impurity contribution sets the characteristic energy scale
involved in the physics of impurity-released magnetic mo-
ments. As it can be seen in Table 1, Jimp is finite, which
shows that the Zn-induced magnetic moments are inter-
acting, consistent with our picture. Moreover, this energy
scale is not of the order of the typical exchange T∗.

Alternatively, the susceptibility data in [13] can be fit-
ted with the Curie-Weiss expression

χ(T ) =
C

θ + T
+
CSP

T
exp

(
−∆
T

)
, (5)

a fit proposed in reference [9]. As it is visible in Figure 2,
the form of the susceptibility also leads to a good descrip-
tion of the susceptibility for temperatures ranging between
the Néel temperature and the spin-Peierls temperature.
The parameters of the fits are shown in Table 1, and the
energy scale θ involved in the fit (5) is again orders of
magnitude larger than the typical exchange T∗. Both ex-
pressions (4, 5) have the same high temperature behavior
in the limit T � J, θ, and, in this regime, θ = J . Once the
two fits have been performed independently, we can check
that these energy scales are indeed the same, as it is visible
in Table 1, and comparable to the ordering temperature
TN.

The reason why the Néel temperature is not of the or-
der of T∗, but many orders of magnitude higher, is that, as
a result of disorder in the spatial distribution of magnetic
moments, clusters exist in the system with spins which
are close to each other, being therefore strongly AF cor-
related. Once the interchain couplings will be included
(Sects. 3 and 4), this will result in a Néel temperature
many orders of magnitude larger than T∗.
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Fig. 3. Variations of the correlation length in the XX limit
for x = 0.3% doping versus temperature, with ξSP = 9 and
∆ = 44.7 K. (a) shows the variations of the correlation length
of the disordered system and (b) the correlation length of
the typical realization of disorder, namely, an array of equally
spaced magnetic moments. The limiting value of the correla-
tion length when T → TSP is 1/(n + 2/ξSP), the factor of 2
originating from the XX approximation.

3 Mean field theory of AF ordering

In this section we first recall (Sect. 3.1) the results ob-
tained in 1D [16,17], discuss the energy scale T∗ in the
1D model (Sect. 3.2), and present in Section 3.3 the ex-
tension to include the effect of the interchain coupling J⊥.
We take in this section as well as in the forthcoming Sec-
tion 4 a spin-Peierls gap ∆ = 44.7 K [20], assumed to be
independent on temperature. The spin-Peierls correlation
length is ξSP = 9 [28].

3.1 Physics of the 1D model

As shown in [16,17], a single chain does develop quasi-long
range magnetic correlations at zero temperature, which
we believe is the key point for understanding the estab-
lishment of AF ordering at arbitrarily low doping. More
precisely, the correlation length ξ(T ) is found as the root
of f(y, ΓT ) + 1 = 0, with y = −1/ξ, ΓT = ln (∆/T ), and

f(y, Γ ) = α
f0(y)− α tan (αΓ )
f0(y) tan (αΓ ) + α

,

where α = ξSP

√
−y(y + 2x), and f0(y) = ξSP(y + x).

The same solution holds in the XX limit, except that the
correlation length is then found as the root of the equation
f(y, ΓT ) + 2 = 0. The correlation length is compared in
Figure 3 to that of an ordered array of magnetic moments
separated by a distance of 1/x and interacting with an
exchange ∆ exp (−1/xξSP).

Finally, we will use latter the local staggered suscepti-
bility χs(T )

χs(T ) = x

(
1/ξSP

x ln (∆/T ) + 1/ξSP

)2 1
4T
· (6)

3.2 Energy scale T∗

The staggered spin-spin correlation function

〈Si(r)Si(0)〉 ∼ (−1)r
e−r/ξ(T )

r2
,

shows quasi-long-range AF fluctuations at low tempera-
ture, with the limiting behavior of the correlation length

ξ(T )→ 2xξ2
SP

π2
ln2

(
T

∆

)
(7)

valid at extremely low temperature T < T∗, in which case
the system has crossed-over to the random singlet fixed
point [17,29,30]. The distribution of the exchange con-
stants is

P (J) =
xξSP

∆

(
∆

J

)1−xξSP

θ (∆− J) .

This distribution P (J) is such that the typical exchange
constant (9), when xξSP � 1, is much smaller that the
average exchange

〈〈J(r)〉〉 = ∆
xξSP

1 + xξSP
· (8)

The energy scale T∗ is defined by

T∗ ' e〈〈log[J(r)]〉〉 = ∆e−1/(xξSP), (9)

and is equal to the typical exchange constant among the
spins. The symbol 〈〈. . . 〉〉 denotes a disorder average [31].
The definition of T∗ in equation (9) in the 1D model is
equivalent to the one we have introduced in Section 2.2
on the basis of a 2D modeling. Above this temperature,
at which the correlation length is of the order of 1/x (the
average distance between the impurities), ξ(T ) decreases
with increasing temperature, approaching ξSP when T →
∆. As shown in Figure 3, at intermediate temperatures
T∗ < T < TSP the AF correlation length is increased by
disorder. Above T∗, the disordered chain takes advantage
of rare fluctuations in which many spins get closer than the
average distance 1/x, thus forming AF correlated clusters
due to the exponential dependence of the exchange (3)
upon the distance.

The experimental values of the Néel temperature (see
Tab. 1) are clearly of the order of the average exchange
〈〈J〉〉, and not of the order of the typical exchange T∗. The
same is true for the characteristic exchange Jimp in (4) and
the (negative) Curie temperature θ in (5). The orders of
magnitude of Jimp and θ obtained in Section 2.2 are in
fact a proof of the relevance of disorder in the physics of
the system.

3.3 Mean field treatment

We now include the effect of an interchain coupling J⊥ '
12 K [20] under the form of a mean field treatment based
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Fig. 4. Comparison between the experimental phase diagram
by Manabe et al. [13] (�), our mean-field treatment (+) and
the decimation results (L = 40: �; L = 81: ×). The fit to
the experimental data is A exp (−B/x), with A = 2.3 K and
B = 5.7×10−3 . The mean field results (+) have been obtained
with ξSP = 9c and J⊥ = 12 K. The decimation results have
been calculated with sizes L = 40 (�) and L = 81 (×), and
correspond to an existence probability of 1/2. As it can be
seen in this figure, both estimations of the Néel temperature
at low doping are much larger than T ∗ = ∆ exp (−1/xξSP)
(' 10−47 K if x = 0.1%). The experimental results as well as
the results from the mean field treatment and the decimation
procedure show no critical concentration. The mean field and
decimation results have been obtained by using the known pa-
rameters (1) for CuGeO3 as an input of the calculation, with-
out adjusting any parameter.

on the 1D model proposed and analyzed in references
[16,17]. As recalled in Section 3.1, the 1D version of
our model does develop quasi-long-range AF fluctuations,
which is the reason why AF order will be easily gen-
erated once an interchain coupling J⊥ is taken into ac-
count. When the interchain exchange J⊥ is switched on,
a true Néel long range order might develop. The ques-
tion whether the Néel order is a true long range order or
a short range order will be discussed in more details in
the light of the decimation calculation in Section 4. We
look in the present section at the mean field response to
a uniform staggered field, and therefore the Néel order is
infinite ranged, which is not the case when the interchain
coupling is included beyond the mean field treatment.

To get an estimate of the Néel temperature, we use the
following mean-field like equation for TN:

J⊥χs(TN)ξ(TN) = 1, (10)

where χs(T ) is the local staggered magnetic susceptibility
(6), and ξ(T ) the correlation length drawn in Figure 3. The
Néel temperature calculated via equation (10) is plotted
in Figure 4 as a function of the impurity concentration x
for different values of J⊥. It is quite clear from the present
calculation that the Néel temperature TN is much larger
that T∗. This originates from the fact that large magnet-
ically ordered clusters form already much above T∗. This
fact, together with the finite polarizability of the singlet

dimerized background, explains the surprisingly high Néel
temperatures TN.

We can even obtain a rougher estimate of the Néel
temperature. Since T∗ � TN < TSP, we can, in a first
approximation, take the correlation length ξ(T ) equal to
the spin-Peierls correlation length ξSP, and further assume
that the susceptibility amounts to a paramagnetic contri-
bution of the free magnetic moments: χs(T ) ' x/T . Using
equation (10) we obtain the Néel temperature

TN ' J⊥xξSP, (11)

linear in the impurity concentration. Taking J⊥ ' 12 K,
and ξSP ' 9c and x = 0.01 we get TN = 1.08 K. At the
same concentration, Martin et al. measure TN ' 2 K [6],
of the same order of magnitude as our estimate.

Both equations (10, 11) are approximate expressions,
which might work at intermediate impurity concentra-
tions, but whose validity is doubtful at very low doping x.
Anyhow, those results would imply that no critical con-
centration is needed to get a Néel phase, since a single
chain does develop quasi-long range correlations for any
non zero doping. Moreover, the Néel temperature obtained
in this mean field treatment is obviously not of the order
of T∗, but of the same order of magnitude than the experi-
mental value. At this point, we judge the mean field treat-
ment to compare satisfactory to the experimental data,
given the fact that our model is certainly schematic. These
results will be further confirmed by the decimation anal-
ysis in Section 4.

4 Low doping physics: decimation in 2D

We now present a decimation scheme in 2D which allows
to describe the physics at extremely low doping. We have
already shown in Section 3 that our model leads to cor-
rect orders of magnitude of the Néel temperature. We do
not believe this mean field theory to be valid at very low
doping, since lowering the doping should enhance inho-
mogeneities, and we then do not expect the physics to
be captured by a homogeneous staggered field involved
in the mean-field Stoner criterion (10). This is why we
now consider the full disordered problem in a fixed dimer-
ized background. We take a square lattice of size L × L,
representing the initial Cu sites of CuGeO3, which, with-
out doping, are paired into a spin-Peierls dimerized phase.
Some of these lattice sites will be occupied by non mag-
netic impurities with a probability x, leaving in their vicin-
ity unpaired spin 1/2 moments. The exchange coupling
between two such spins at positions (x1, y1) and (x2, y2)
is H1−2 = J1−2S1 · S2, where we take

|J1−2| = ∆ exp

−
√(

x2 − x1

ξx

)2

+
(
y2 − y1

ξy

)2
,

(12)

∆ being the spin-Peierls gap ∆ = 44.7 K, and ξx ' 9c and
ξy ' 0.1 ξx the correlation lengths in the c and b direc-
tions, respectively. This model has no adjustable parame-
ter. The exchange J1−2 is negative if the two sites belong
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to the same sublattice, and positive otherwise, which takes
into account the finite response of the singlet background
to a staggered field. This defines a disordered spin model
in 2D with long range interactions, in the sense that any
spin has an exchange with any other, which however de-
cays exponentially with their separation. The decimation
procedure we use here is similar to the one used by Bhatt
and Lee [32] in the study of phosphorus doped silicon.
However, we decimate strong bonds without renormaliz-
ing the exchanges, which is just sufficient to get the order
of magnitude of the ordering temperature.

By construction, our model has bonds which are never
frustrated and are perfectly compatible with a long range
AF order, being ferro on the same sublattice and anti-
ferro on different sublattices. Therefore we may not get
the same low temperature properties found by Bhatt and
Lee [32] in their work on Si:P. The reason of the difference
is that our spins are diluted into a matrix which is easily
AF polarizable. A similar physics does not exist in Si:P.

4.1 Decimation in 2D

In one dimension, a RG transformation of a random AF
spin chain consists in picking-up the strongest exchange
of energy E, decimate the two corresponding spins, and
renormalize the exchange by projecting onto the singlet
states of the decimated bonds. This leads to broad renor-
malized exchange distributions and to asymptotically ex-
act low-energy physics [30].

Similarly to the study on Si:P by Bhatt and Lee [32],
we carry out the same procedure in 2D, with the differ-
ence that we do not define a renormalized exchange but
just eliminate the strong bonds. This approximation is ex-
pected to lead to qualitatively correct results as far as the
estimate of the ordering temperature is concerned. Consid-
ering the 2D disordered problem defined by the Hamilto-
nian (12), we decimate the bonds of strength E < J ≤ ∆.
Assuming the initial bonds were colored in white, we color
in black these strongly coupled bonds. As the energy E de-
creases, more and more white bonds will be turned into
black, until the black bonds percolate throughout the sys-
tem at an energy EP. We use EP as an estimate of the
Néel temperature TN, even though, strictly speaking, EP

is an upper bound of the Néel temperature. In practice, we
use the following techniques to solve this problem numer-
ically. (i) The decimation is carried out by quick sorting
the exchanges. (ii) A linked list is built at each energy that
encodes the graph of existing exchanges. (iii) A Hoshen-
Kopelman relabeling algorithm [33] is used for cluster la-
beling. We have tested our program with standard 2D
site and bond percolation, with excellent results. We now
present our results, by first showing in Section 4.2 the
failure to find a percolating cluster in the infinite volume
limit. We next consider in Section 4.3 ordering in a finite
coherence volume.

4.2 Absence of self similar ordering

In this section, we fix the impurity concentration x and
look for percolation in an initial lattice of size L×L, with

increasing sizes L. Given the anisotropy of the problem
(ξx = 9 = 10ξy), percolation occurs along the x direction
of the strongest exchanges. It may happen that the left-
most and right-most columns contain no impurity at low
concentration, because of the finite probability Lx to have
an impurity present in a given column. We are thus lead to
consider as percolating a cluster that percolates between
the left-most and right-most columns that contain at least
one impurity.

In order to determine the percolation probability, we
consider two (equivalent) quantities. First the existence
probability EL, i.e. the probability to find a percolating
cluster in a system with a finite size L. We also consider
the Binder cumulant BL = 〈S2〉L/〈S〉2L, with S the num-
ber of impurities in a percolating cluster. We analyze in
this section the finite size scaling behavior of these two
quantities. More precisely, if a true percolation transition
would occur (as it is the case in the 2D bond and site
percolation problem), the crossing points either of EL(T )
or of BL(T ) for increasing sizes would accumulate at the
transition temperature. We have plotted in Figures 5 and 6
the existence probability and Binder cumulant for increas-
ing sizes at a fixed impurity concentration x = 3%. As
it is visible in these figures, there is no true percolation
transition in the sense that while the crossing point tem-
peratures are higher and higher as the sizes increase, the
existence probability decreases to zero. We interpret this
result as the lack of true long range order in an infinite
system. Therefore, we believe that AF ordering is of a
Griffith type.

In fact, this finding is not unexpected. At a fixed en-
ergy T , we can interpret the diluted spins as particles with
a core of area σ approximately given by

σ(T ) ' πξxξy ln2

(
∆

T

)
· (13)

The core is indeed elliptic, with a ratio between the axes
a/b = ξx/ξy. Hence, the ratio between the area occupied
by these particles and the surface sample is

neff(T ) = xσ(T ). (14)

Ignoring the complication due to the anisotropy, and as-
suming that the cores are impenetrable, a percolating clus-
ter can only appear if T ≤ TP where neff(TP) = nc, being
nc = 0.59 the site percolation threshold of a 2D square
lattice. However, the core of each particle is not impene-
trable. For this reason the existence probability does not
approach one for increasing sizes even below TP. Indeed,
the existence probability E(T ) for L → ∞ does not tend
to a step function as for standard percolation, but to a
smooth curve as it is visible from the finite size study
shown in Figure 5.

4.3 Low doping phase diagram

The previous analysis suggests that a true Néel long range
order is not established at very low doping, where the sin-
glet background is assumed only to provide a coupling be-
tween the impurity released spins. As we said, for larger
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Fig. 5. Variations of the existence probability E(T ) versus
temperature T at a fixed impurity concentration x = 0.03 and
for increasing sizes L = 40 (�), L = 57 (+), L = 81 (�),
L = 115 (×). As it is visible in this figure, there is no self-
similar fixed point.

Fig. 6. Variations of the Binder cumulant B(T ) versus tem-
perature T at a fixed impurity concentration x = 0.03 and for
increasing sizes L = 40 (�), L = 57 (+), L = 81 (�), L = 115
(×). As it is visible in this figure, there is no self-similar fixed
point, in agreement with the existence probability result shown
in Figure 5.

doping, the background will be much more influenced by
the impurities, which, besides creating states inside the
gap, would also reduce the main gap, making a true an-
tiferromagnetic long range order competitive with respect
to the spin-Peierls phase, as discussed in the Introduction.

Nonetheless, the neutron beam that probes AF order-
ing has a finite coherence length. Therefore the relevant
question, even at low doping, is not whether a true long
range order exists, but rather if clusters of size larger than
that coherence length appear, and with which probability.
For this reason, we want now to discuss AF ordering in
a finite coherence volume, which, as we said, is set ei-
ther by the size of the sample or by the finite coherence
length of the experimental probe, e.g. the neutron beam.
Therefore we vary the impurity concentration x at fixed
size L. The Néel temperature is estimated by imposing a

Fig. 7. Variations of 1−E(T ) versus the temperature T , E(T )
being the existence probability for percolation of strongly cou-
pled clusters in a system of size L = 40. The different curves
correspond to: x = 0.03 and a = 1.25 (�); x = 0.025 and
a = 0.98 (+); x = 0.02 and a = 0.72 (�); x = 0.015
and a = 0.48 (×); x = 0.01 and a = 0.29 (4); x = 0.005
and a = 0.135 (∗). The CuGeO3 parameters are ∆ = 44.7 K,
ξx = 9 and ξy = 0.1ξx.

Fig. 8. Variations of the exponent a involved in the fit 1 −
E(T ) = T a shown in Figure 7. The extrapolation to x = 0 and
a = 0 has been added and is consistent with the data at higher
concentrations.

fixed value of the existence probability EL(T ) = 1/2. We
are thus forced to analyze the low temperature behavior of
the existence probability EL(T ). This is shown in Figure 7
for L = 40 and impurity concentrations between 0.5% and
3%. With these parameters, the low temperature behavior
of the existence probability is well fitted by the power-law
1 − EL(T ) = T a(x). Figure 8 shows the variations of the
exponent a(x) versus x. In this figure, we have added the
point (x = 0, a = 0), and, as it is visible, this extrapola-
tion is compatible with the large x data, hence showing
that zero temperature AF ordering occurs for an infinites-
imal doping in a finite size. Imposing a fixed existence
probability EL(TN) = 1/2, we obtain lnTN ∝ −1/x, a
form of the Néel temperature proposed from the low dop-
ing measurements in reference [13]. The calculated Néel
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Fig. 9. Variations of 1 − E(T ) versus the temperature T ,
E(T ) being the existence probability for percolation of strongly
coupled clusters in a system of size L = 81. The fits are of
the form log (1− E(T )) = f(log (T )), with x = 0.01: f(x) =
−0.11x2 + 0.18x (×); x = 0.0075: f(x) = −0.092x2 + 0.042x
(�); x = 0.005: f(x) = −0.05x2 (+); x = 0.0025: f(x) =
−0.018x2 (�). The CuGeO3 parameters are∆ = 44.7 K, ξx = 9
and ξy = 0.1ξx.

temperature is shown in Figure 4, together with the ex-
perimental points by Manabe et al. Compared to these
experiments, we obtain a smaller value of the Néel tem-
perature, still much above T∗, in agreement with [13].

In order to analyze the effect of increasing the coher-
ence length, we now consider a system with a larger size
L = 81. The low temperature behavior of the existence
probability is shown in Figure 9, with doping concentra-
tions from 0.25% to 1%, where the inclusion of a quadratic
term was necessary in the fit. The Néel temperature ob-
tained by imposing EL(TN) = 1/2 is shown in Figure 4,
together with the L = 40 result and the experimental
data. As it is visible in this figure, in spite of the differ-
ent behavior of the low temperature existence probability
EL(T ) when the system size was increased from L = 40 to
L = 81, the orders of magnitude of the Néel temperature
TN(x) remain similar.

The above analysis suggests that at low doping the
model does not have a true long range order in the ther-
modynamic limit, but the probability to find an ordered
cluster of any given size L is finite. This implies that the
system will appear as if it were ordered to an external
probe with a finite coherence length. This scenario gives
a natural explanation of the fact that the measured Néel
temperatures are always much larger than the typical en-
ergy scale T∗ of the doped CuGeO3, and of the evidence
that the intensity of the AF peaks observed in neutron
scattering is not saturated even at 1.4 K [5] for a Zn doped
sample with x = 0.034.

To obtain the dependence of the susceptibility upon
temperature, we would need to improve our decimation
scheme by renormalizing the exchanges, similarly to refer-
ence [32], and inserting a weak spin anisotropy, to break
the spin symmetry.

Let us summarize our decimation results by comparing
them to the experiments by Manabe et al. [13], and to T∗:

Fit by Manabe et al.: lnTN ∼ 5.7× 10−3/x (15)
Decimation (L = 40, 81): lnTN ∼ 10−3/x (16)

Behavior of T∗: lnT∗ ∼ 10−1/x, (17)

which illustrates both the fact that we can reproduce
sucessfully the absence of critical concentration in our
model, and the crucial role of disorder in enhancing the
Néel temperature.

5 Conclusion and discussion

Let us summarize the proposal we have presented for the
onset of the Néel long range order in doped CuGeO3. We
first want to stress that, in our opinion, the real difficulty
in the subject is not the coexistence of dimerization and
antiferromagnetism, since the two order parameters are
not incompatible. Instead, what is puzzling is the appear-
ance of antiferromagnetism at such low impurity concen-
tration as 1×10−3, with a reasonably high transition tem-
perature. We have shown that this behavior might depend
on the peculiar properties of the disorder in this system,
as well as in other spin gaped systems.

We believe that the most important effect of disorder,
at low doping, is to induce randomly distributed localized
free moments. These moments are weakly coupled by an
exchange constant exponentially decaying upon the dis-
tance, see equation (3), caused by the virtual polarization
of the singlet background. We have shown that even a sin-
gle chain does develop quasi long range Néel order, i.e. a
power law decaying staggered correlation function, which,
we believe, does imply a low temperature transition to an
AF phase as soon as the interchain exchange is taken into
account. Moreover, we argued that the exponential de-
pendence on the distance of the exchange between those
randomly distributed moments implies that rare events in
which the impurity released spins are closer than the av-
erage distance (and therefore get strongly coupled), dom-
inate the physics at low doping, in a Griffith-like scenario.
This picture was fully confirmed by an investigation of the
2D disordered problem using a decimation method. The
formation of these Griffith-like clusters, together with the
finite staggered susceptibility of the singlet background,
may explain why ordered domains larger that the neutron
coherence length do appear at temperatures much larger
than the temperature T∗ (the exchange between two mo-
ments at a distance equal to the average one).

Some consequences can be drawn from this scenario:
– A Néel transition is expected for any arbitrary small

impurity concentration.
– At relatively large doping concentrations, the mean

field picture is expected to hold since the inhomo-
geneities of the AF order are weak. In this concen-
tration range, the Néel temperature behaves like TN '
JbξSPx, where Jb is the exchange constant in the b-
direction, and ξSP the correlation length in the pure
CuGeO3.
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– For low impurity concentrations, the Néel state be-
comes highly inhomogeneous and the decimation me-
thod is more suited than the mean field theory. In-
stead of a single transition temperature we find a quite
broad distribution of TN’s. We have indications that a
true long range order is never established, so that the
low temperature phase might be rather interpreted as
a Griffith-like antiferromagnet. We have shown that,
for small coherence volumes, the Néel temperature be-
haves like lnTN ∼ −1/x. By increasing the coherence
volume, this behavior does not rigorously hold. How-
ever, as it is visible in Figure 4, the behavior of the
Néel temperature for L = 81 can hardly be discrim-
inated from the L = 40 calculation, and a fit of our
results to a lnTN ∼ −1/x behavior would be equally
satisfactory.

– A very long correlation length in the c-axis direc-
tion, extending well above ξSP, may be observed in
a wide temperature range. This can be measured
in NMR experiments at very low doping. For in-
stance, the NMR linewidth in the ladder compound
Sr(Cu1−xZnx)2O3 at a Zn concentration x = 0.25%,
at which no Néel transition has been observed down
to the lowest accessible temperature, is two orders of
magnitude larger than the correlation length of the un-
doped compound [34], which indicates that a similar
behavior might well occur in the doped CuGeO3.
We now compare our results with other theoretical pro-

posals. We first compare our work to the one by Mostovoy
et al. [15], and next to the work by Fukuyama et al. [14],
and Yoshioka and Suzumura [19]. The technicalities in-
volved in the discussion of these last two works are left in
the Appendices A and B, and we focus here in the con-
cluding section on more qualitative aspects.

Mostovoy et al. [15] have recently investigated the ef-
fects of interchain coupling at a mean field level in an
antiferromagnetic Heisenberg chain with random dimer-
ization, modeled by a δ-correlated in space Gaussian-
distribution peaked around a finite average value. In order
to make contact with their work, we make the following
comments:

(i) The microscopic modeling of doping in a spin-Peierls
system is quite different in our model and in refer-
ence [15]. As we showed in reference [16], our model
is more related to a dimerization with a random tele-
graph noise of zero average distribution, with the low
temperature physics dominated by the localized spins
around the domain walls.

(ii) The physics of the 1D limit of both models is differ-
ent. This can be seen by considering the RG flow
[29,30]. The 1D limit of the model by Mostovoy
et al. has been solved by Hyman et al. [35], and flows
to a fixed point with power-law Griffith singularities.
By contrast, the 1D limit of our model flows to the
random singlet fixed point [30] with logarithmic sin-
gularities [16,17].

(iii) More importantly, the random dimerized Heisenberg
chain, which is the starting point of the description in
reference [15], does not develop quasi long range AF

fluctuations, as it is the case in our proposal. This al-
lows to understand why a finite critical concentration
of impurities is required in reference [15] to generate
an AF-dimerized phase. As we show in the present ar-
ticle, this is not the case in our model, and it seems
that this is not the case in experiments either [13].

A proposal similar to the one by Mostovoy et al. was
previously put forward by Fukuyama, Tanimoto and Saito
(FTS) [14], who also worked out a model showing a coex-
istence of antiferromagnetism and dimerization, as well as
the onset of antiferromagnetism for arbitrary small dop-
ing. As we discussed, we have started our analysis by as-
suming that the main effect of the impurities is the re-
lease of free spins out of the singlet background, which
is in agreement with the magnetic susceptibility data on
the doped compounds, showing an almost Curie like com-
ponent at low temperature which seems to scale linearly
with doping (see for instance Refs. [9,13]). Instead, FTS
assume, as Mostovoy et al., that the main effect of dis-
order is the local reduction of the dimerization δimp < δ
close to each impurity, hence of the spin gap. For instance,
they can fit the experimental reduction of the scatter-
ing intensity from the dimerized lattice in the 0.7% Si
doped compound, by taking δimp ∼ 0.2δ. This leads to
a rough estimate of the local reduction of the spin gap
∆imp ∼ (0.2)2/3∆ ' 0.9∆. Obviously, for smaller impurity
concentrations, one should expect an even smaller reduc-
tion of the spin gap. However, to explain within this model
the almost Curie like behavior of the low temperature
susceptibility at low doping, one should assume a much
stronger suppression of the spin gap down to ∼ 10 mK
close to each impurity, not just a small reduction as the
fit to the neutron scattering data would imply. This is one
reason why we believe that our approach is more relevant.
The other is that we do not believe that a local reduction
of the dimerization might explain the appearance of anti-
ferromagnetism at such low concentration as 0.1% of Zn
doping.

In fact, a more realistic modeling of disorder in
CuGeO3 should include both disorder effects, the local
reduction of dimerization as well as the appearance of
free spins. Essentially, the main difference between our
approach and the FTS one is in the different emphasis
placed on the two effects. We believe that the main role
at low doping in establishing the Néel phase is played by
the free moments induced by disorder, while FTS seem
to favor the other mechanism of a local reduction of the
dimerization.

Apart from this comment on the grounds of the model
proposed in reference [14], we also have some more tech-
nical criticisms. To analyze their model, FTS use the so-
called Self Consistent Harmonic Approximation (SCHA)
applied to the bosonized version of a dimerized Heisenberg
chain. This approximation is a mean field theory, or sad-
dle point approximation, plus random phase fluctuations.
By this technique, they show the existence of a mean field
solution having both a finite dimerization parameter and
a finite Néel order parameter. Essentially, close to the im-
purity, where the dimerization parameter is assumed to be
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reduced, a staggered magnetic moment in the z-direction
arises. We believe that this approach is not fully consis-
tent, as we explain in detail in Appendix A.

An alternative variational approach has recently been
developed by Yoshioka and Suzumura [19] for the Zn dop-
ing case. They have rigorously shown that in bosonization
the spin-lattice coupling does change sign crossing a non
magnetic impurity, as it was proposed in reference [16].
With this disorder modeling they have proved the exis-
tence of a variational action which does again describe a
state where the dimerization gets reduced around an im-
purity and at the same time a static staggered moment ap-
pears in the z-direction. We believe that this variational
approach gives a reasonable description of the Néel or-
dered phase, very close to what we propose, but does not
allow a description of how the AF ordering occurs, which
we did in the present work. We postpone to Appendix B a
detailed discussion of this point, and we end-up with two
simple comments on these semiclassical analyzes.

The dimerized phase breaks translational invariance
like a Néel phase does, which, in addition, also breaks
spin symmetry. If one analyzes the role of defects in a
dimerized state within a scheme which breaks SU(2) sym-
metry (what is implicitly done in those semiclassical ap-
proaches, as shown in Appendix B), it is not a surprise
that a finite staggered magnetization comes out of the cal-
culation (without spin anisotropy or an applied staggered
magnetic field), since the dimerized state already breaks
translational symmetry.

Finally, one can work out a model in the spirit of
the FTS scenario. This can be done by considering a
dimerization distributed as a telegraph noise, and taking a
value δ in the dimerized background (large segments), and
0 < δimp < δ close to the impurities (short segments). The
resulting disordered model can be exactly solved in the XX
limit along the lines in reference [36]. This would result in
a model with power-law Griffith singularities, equivalent
to the model by Mostovoy et al. [15], and inequivalent to
our model where the Dyson singularities are logarithmic.
This model would not flow to the random singlet fixed
point [30], would have much weaker AF fluctuations than
our model, and, as in the case of the model by Mostovoy
et al., a critical concentration would be expected for the
appearance of AF order.
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Appendix A: Self consistent harmonic
approximation

In this Appendix, we discuss the Self Consistent Harmonic
Approximation (SCHA) approach used by Fukuyama,
Tanimoto and Saito (FTS) in reference [14]. We do not
want to enter in the details of the transformation which
allows to map the spin-Peierls problem onto a bosonic one,
since they can be found in reference [14], and references
therein. We assume that this transformation is valid, and,
following [14], that the resulting bosonic Hamiltonian is

Ĥ =
1
2

∫
dx
[
Π(x)2 + (∂φ(x))2

− 2gu(x) sin
(√

4πKφ(x)
)

+ κu2(x)
]
, (A.1)

where φ(x) and Π(x) are bosonic conjugate fields. The
classical variable u(x) represents the dimerization lattice
distortion, and the sin(. . . ) is the spin dimerization or-
der parameter. Notice that the cos(. . . ) would represent
the z-component of the staggered magnetization. We then
write φ(x) = φc(x) + φ(x), where φc(x) is a classical vari-
able, and φ(x) is the quantum fluctuation part, which is
assumed to have a zero average value. We want to find the
minimum of the total energy assuming a bosonic state |0〉
which is the ground state of the following Hamiltonian

Ĥsc =
1
2

∫
dx
[
Π(x)2 + (∂φ(x))2 +m(x)φ2(x)

]
, (A.2)

with m(x) > 0. Therefore we have to find the appropriate
values of φc(x), u(x) and m(x) which minimize the aver-
age value of Ĥ over |0〉. This is the so-called Self Consis-
tent Harmonic Approximation (SCHA), which is a well de-
fined variational technique. Since (A.2) is quadratic, then
〈0|φ(x)|0〉 = 0, and

〈0| sin
(√

4πK (φc(x) + φ(x))
)
|0〉 =

D(x) sin
(√

4πKφc(x)
)
,

where D(x) = e−2πK〈φ(x)2〉. If we define T (x) ≡ 〈Π2(x) +
(∂φ(x))2〉, the self-consistent equations are

− ∂2φc(x)− g
√

4πKu(x)D(x) cos
(√

4πKφc(x)
)

= 0;

(A.3)

κu(x) = gD(x) sin
(√

4πKφc(x)
)

; (A.4)∫
dy
δT (y)
δm(x)

+ 4πKgu(y) sin
(√

4πKφc(y)
)
D(y)

δ〈φ(y)2〉
δm(x)

= 0,

(A.5)

where we used

δD(y)
δm(x)

= −2πKD(y)
δ〈φ(y)2〉
δm(x)

·
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We start by solving (A.5). We write the bosonic fields as

φ(x) =
∑
α

1√
2εα

ϕα(x)
(
bα + b†−α

)
, (A.6)

Π(x) = i
∑
α

√
εα
2
ϕ∗α(x)

(
b†α − b−α

)
, (A.7)

where ϕ−α(x) = ϕ∗α(x), εα = ε−α,∑
α

ϕ∗α(x)ϕα(y) = δ(x− y),

and [bα, b
†
β ] = δα,β , all other commutators being zero. We

want the Hamiltonian (A.2) to be diagonal in terms of
these creation and annihilation operators:

Ĥsc =
∑
α

εαb
†
αbα.

A straightforward calculation gives

−∂2ϕα(x) +m(x)ϕα(x) = ε2αϕα(x), (A.8)

which is the eigenvalue equation for ϕα. On the bosonic
vacuum of the operators bα, we find that∫

dy T (y) =
1
2

∑
α

∫
dy
[
εα ϕ

∗
α(y)ϕα(y)

+
1
εα
∂ϕ∗α(y)∂ϕα(y)

]
,

which, through equation (A.8), becomes∫
dyT (y) =

∑
α

1
2εα

∫
dy
(
2ε2α −m(y)

)
ϕ∗α(y)ϕα(y)

=
∑
α

[
εα −

∫
dy
m(y)
2εα

ϕ∗α(y)ϕα(y)
]

=
∑
α

εα −
∫

dy m(y)〈φ2(y)〉,

where the last identity follows from (A.6). Now, suppose
that m(x)→ m(x)+δm(x). It is easy to get the first order
correction to the eigenvalues through (A.8):∑

α

δεα =
∑
α

1
2εα

∫
dy ϕ∗α(y) δm(y)ϕα(y)

=
∫

dy δm(y)〈φ2(y)〉.

Through the above equations we find that∫
dy

δT (y)
δm(x)

=

〈φ2(x)〉 −
[
〈φ2(x)〉+

∫
dy m(y)

δ〈φ2(y)〉
δm(x)

]
,

which, inserted in equation (A.5) gives∫
dy
[
−m(y) + 4πKgu(y) sin

(√
4πKφc(y)

)
D(y)

]
× δ〈φ2(y)〉

δm(x)
= 0.

This equation is solved by imposing

m(x) = 4πKgu(x) sin
(√

4πKφc(x)
)

e−2πK〈φ(x)2〉,

(A.9)

which gives the self-consistent equation for the mass.
As a simple application, let us consider the homoge-

neous case m(x) = m, u(x) = u, and φc(x) = φc for any
x. From equation (A.3) we get

√
4πKφc(x) = π(n+

1
2

), (A.10)

which choice is in fact the only compatible with SU(2)
symmetry. We choose n = 1. On the other hand equa-
tion (A.8) is solved by plane waves

ϕq(x) =
1√
L

e−iqx,

with energy εq =
√
q2 +m. Therefore

〈φ(x)2〉 =
1

2L

∑
q

1√
q2 +m

' 1
4π

log
(m0

m

)
,

where m0 is a high-energy cut-off, and (A.9) becomes

m = 4πKgu
(
m

m0

)K/2
·

The solution is m ∼ (gu)2/(2−K). Since the approach is
valid only if, for a small coupling g, a small mass m is
obtained, the above equation implies that a mass is gen-
erated if K < 2. This is the famous result for the sine-
Gordon models. If we consider this model as describing a
spin-Peierls transition, we know that K = 1 corresponds
to the XX-limit and K = 1/2 to the SU(2) point. In the
latter case,

m = 2πgu
(
m

m0

)1/4

·

Equation (A.4) is solved by

u =
g

κ

(
m

m0

)1/4

,

finally leading to

m =
4π2g4

κ2m0
· (A.11)



M. Fabrizio et al.: Phase diagram of doped spin-Peierls systems 619

Now let us consider the inhomogeneous case. For in-
stance, following FTS [14], we assume that u(0) = u(l) =
ui. Through (A.9) the self consistent equations can be
written as

− ∂2φc(x) − g
√

4πKu(x)D(x) cos
(√

4πKφc(x)
)

= 0;

(A.12)

κu(x) = gD(x) sin
(√

4πKφc(x)
)

; (A.13)

m(x) = 4πKgu(x) sin
(√

4πKφc(x)
)
D(x). (A.14)

Solving for u(x), we get

u2(x) =
1

4πKκ
m(x),

and the coupled equations for m(x) and φc(x) read

m(x) =
4πKg2

κ
D2(x) sin2

(√
4πKφc(x)

)
, (A.15)

−∂2φc(x) − g2
√

4πKD2(x)
2κ

sin
(

2
√

4πKφc(x)
)

= 0.

(A.16)

We do not know whether these equations have a unique so-
lution. FTS implicitly assume that D(x) as well as m(x)
are independent of x. Then equation (A.13) at x = 0, l
fixes the value of φc(0) and φc(l), which are used as
boundary conditions to solve equation (A.16). The so-
lution is a Jacobi elliptic function. Between x = 0 and
x = l, the solution approaches the homogeneous one
(A.10), but around these points it is different. As a result,
sin2

(
2
√

4πKφc(x)
)

differs from one close to x = 0 and

x = l, leading to a finite value of cos2
(

2
√

4πKφc(x)
)

,
hence to a finite staggered magnetization. This result
would imply that disorder in the lattice distortion leads
automatically to a long range Néel phase, but necessarily
with a staggered magnetization along z. In fact, the stag-
gered magnetization perpendicular to z is expressed in
terms of the conjugate momentum Π(x), which is uncer-
tain if φc(x) gets an average value. This result is puzzling,
since the starting Hamiltonian is spin isotropic. Moreover,
the assumptions D(x) and m(x) x-independent have to
be a posteriori verified. FTS do not make this check, but
clearly, by inspection of equation (A.15), one realizes that
the assumption is not correct. Therefore the calculations
of reference [14] are not self-consistent.

Alternatively, one can look for a solution which does
not break SU(2) symmetry. In this case we have to as-
sume a constant φc(x) = π/2, compatible with (A.10).
Therefore one needs to solve

κu(x) = gD(x); (A.17)
m(x) = 2πgu(x)D(x), (A.18)

or, equivalently,

m(x) =
2π
κ
g2D2(x) = 2πκu2(x),

with the boundary conditions m(0) = m(l) = 2πκu2
i . If

this equation were solvable, we would get an alternative
solution which keeps the SU(2) symmetry. Further work
to establish which is the best self-consistent solution is
needed, but we can safely state that the assumption of
homogeneous quantum fluctuations made in reference [14]
is not self-consistent.

Appendix B: Some rigorous results
in the presence of solitons

In order to better clarify the limits of the SCHA, we
consider a simple case which is related to the work by
Yoshioka and Suzumura [19]. These authors have proved
by bosonization that the coupling to the lattice changes
sign crossing a non magnetic ions. A similar conclusion
was reached in reference [16], by means of a simple map-
ping to a squeezed chain where the non magnetic sites
are eliminated. This mapping is explained in Figure 1.
The squeezed chain is obtained by eliminating the non
magnetic site similarly to what is done in the U → ∞
Hubbard model. The difference here is that the hole does
not move. Next, the weak link across the impurity is ap-
proximated as the weak bond of the dimerized pattern,
i.e. J(1−δ), which is supposed not to change qualitatively
the low energy physics. Hence, the effective model describ-
ing the squeezed chain consists of a dimerized Heisenberg
chain with a domain wall. The model in the presence of
a single domain wall can also be analyzed along the same
lines outlined in reference [19]. The result would be again
that a variational solution can be obtained with a space
dependent classical phase φc(x), but a space independent
mass for the bosons describing the quantum fluctuations.
The same would hold also in the XX-limit, which can be
also easily solved by diagonalizing the spinless fermion
Hamiltonian which is obtained through a Jordan-Wigner
transformation. In the continuum limit and after lineariz-
ing the band around the Fermi momenta kF = ±π/2, one
has to solve the following equations

−i
∂

∂x
χεR(x)− i∆(x)χεL(x) = εχεR(x), (B.1)

i
∂

∂x
χεL(x) + i∆(x)χεR(x) = εχεL(x), (B.2)

where the Fermi field is expressed in terms of the χ func-
tions through

Ψ(x) =
∑
ε

[
eikFxχεR(x) + e−ikFxχεL(x)

]
cε

≡
∑
ε

φε(x)cε,

cε being the annihilation operator of an eigenstate of en-
ergy ε. The dimerization parameter is equal to∆ for x < 0,
and to −∆ at x > 0, thus having a domain wall at x = 0.
equations (B.1, B.2) can be solved and one finds, in addi-
tion to scattering solutions with energy ε = ±

√
k2 +∆2,
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k being the wavevector, a localized zero energy solution
with wavefunction

φ0(x) =
√

2∆e−|x|∆ sin(kFx).

This is a soliton solution for a single domain wall.
The classical phase which appears in the bosonized

version of the model can be related to the phase of the 2kF

oscillating part of the spinless fermion density. Namely, we
expect that

ρ2kF(x) = 〈Ψ†(x)Ψ(x)〉2kF ∼ cos (2kFx+ φc(x)) . (B.3)

The dimer order corresponds to a bond ordered Charge
Density Wave (CDW), i.e. φc(x) = (2n + 1)π/2, while
the Néel phase to a site ordered CDW, i.e. φc(x) = nπ.
In the absence of the domain wall, the phase is φc(x) =
(2n+ 1)π/2 at any x. In addition, in the presence of the
domain wall, two other terms arise. One is

ρ1(x) =
(
n0 −

1
2

)
∆e−2|x|∆ (1− cos(2kFx)) , (B.4)

where n0 is the occupation probability of the soliton state.
In fact, the term proportional to n0 is the soliton wave
function density probability, while the other one comes
from the negative energy scattering solutions. We notice
that ρ1 oscillates with a phase which has two possible
values φc = 0, π depending on n0, which are compatible
with the two possible Néel ordered phases. The other term
which is generated by the domain wall decays like

ρ2(x) ∼ sin(2kFx)√
∆x

e−2|x|∆, (B.5)

and generates the polarization of the background responsi-
ble for the coupling among consecutive solitons, which we
have considered throughout this work. This term oscillates
with a phase compatible with a dimer order. Were ρ1(x)
be present, we would indeed find a coexistence of dimer
order and Néel one, the latter mainly localized close to the
domain wall.

We have now all the elements to describe what hap-
pens in this solvable model for the classical phase, and
compare with the variational approach of reference [19].
We start reminding that after the Jordan-Wigner transfor-
mation, a site occupied by a spinless fermion corresponds
to a the spin having a z-component Sz = 1/2, while an
empty site to Sz = −1/2. Moreover, a chain with peri-
odic boundary conditions is compatible with the presence
of a single domain wall only if it has an odd number of
sites. Therefore the ground state has a total S = 1/2.
In our XX-limit we can not rigorously discuss the SU(2)
symmetry, but at least the following discussion gives some
hints how the implementation of such symmetry gives a
classical phase φc(x) = π/2 independent of the position.
In fact, if we take a ground state which does not break
the symmetry, we have to assume that the chemical po-
tential crosses exactly the soliton energy, so that there is
an equal probability to have Sz = ±1/2. In other words
this implies that n0 = 1/2, leading to a vanishing ρ1(x),

and leaving only the ρ2(x) term which has indeed a phase
fixed at φc(x) = π/2. Let us suppose a domain wall and
an anti-domain wall at a distance much larger that 1/∆.
We can now consider a periodic chain with an even num-
ber of sites. The ground state will be a singlet. Around
each domain wall there will be a localized soliton state at
zero energy. The two S = 1/2 solitons will be coupled by
the polarization of the background, generating a singlet
S = 0 as well as a triplet S = 1 state. The singlet state
has energy −t (0 < t � ∆), the Sz = 0 component of
the triplet +t, and the Sz = ±1 have energy zero, where
t decays exponentially with the distance among the two
domain walls. The fact that the triplet is not degenerate
is a consequence of the XX-limit. In this case, however, we
are lucky since the lowest energy state, being a singlet, is
SU(2) invariant. This is in essence why the spin anisotropy
with a random distribution of domain walls does not play
a very relevant role for what it regards the ground state
properties. Within the lowest energy singlet state, each
soliton state has an equal probability of being empty or oc-
cupied, leading again to a vanishing ρ1(x) equation (B.4).
However, one can view the singlet state as oscillating be-
tween two configurations each having ρ1(x) 6= 0, hence a
classical phase φc = 0, π compatible with a Néel order.
In a rough picture, the system is locally, in time, in one
of the two possible Néel ordered states, and oscillates be-
tween them over a very long time scale ∼ 1/t. Moreover,
in spite of the exponential decay of the polarization over
a length ξSP ∼ 1/(2∆), which is the correlation length of
the dimerized state, the two solitons, which are at a dis-
tance much larger that ξSP, oscillate coherently. This is
on a very small scale our picture of what happens in the
doped CuGeO3.

We think that the variational approach of refer-
ence [19] is able to describe only the states where one
soliton is occupied and the other is empty, or vice versa,
and not the superposition of the two, which is beyond a
mean field like approach. Therefore the method implicitly
breaks SU(2) symmetry, which obviously leads to a finite
staggered magnetization ρ1(x), since already the dimer-
ized state breaks the translational invariance. For this rea-
son, we believe that this approach should give a reason-
able description of the Néel ordered phase, but is unable
to describe the way in which the magnetic ordering is es-
tablished, which is what we have done in this work.
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